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Introduction

In the marine environment, all immersed surfaces (na-
tural or artifi cial) are rapidly colonized by a succession 
of organisms, the outcome being known as ‘biofouling’ 
(Figure 1). Within the fi rst hours, surfaces are covered 
by microbial biofi lms (microfouling) [1], that infl uence 
the successive settlement, colonization and growth of 
macroorganisms (macrofouling) [2]. Biofi lm formation 
is then followed within a week by diatoms (microal-
gae), spores of macroalgae (seaweeds), protists, fungi 
and protozoa, followed in turn by larvae of invertebra-
tes such as barnacles (Linear successional surface co-
lonization model) [3, 4, 5, 6, 7]. 
The implications of microbial biofi lms in marine bio-
logy, and especially in relation to biofouling, have also 
been extensively studied, and a wide type of specifi c 

interactions between microbial biofi lms (Figures 1 and 
2) and fouling organisms [8, 9, 10, 11, 12] have been 
revealed. Microbial biofi lms were shown to infl uence 
the settlement of marine organisms decades ago [13]. 
More recently, the formation, composition and physio-
logy of bacterial biofi lms have been studied, including 
their role in the environment [14, 15, 16, 17]. It is now 
well established that density-dependent, cell-to-cell 
communication processes between bacteria, generally 
referred to as ‘quorum sensing’, control several impor-
tant features of biofi lms (e.g., development, virulence 
and dispersal stages) [18, 19, 20, 21].

Initial stage of biofi lm development: bacterial 
colonization, matrix formation and maturation

Bacteria are considered to be the primary colonizers 
of substrata, constituting the initial stage of biofi lm de-
velopment. By encountering surfaces, free-swimming 
microbial cells can switch from a planktonic to a ben-
thonic lifestyle exuding a slimy matrix and forming 
complex and dynamic communities with high phenot-
ypic diversifi cation and high degree of cellular coor-
dination [22].

Initial phase of biofouling: 
the microbial biofi lm formation 
The biofouling formation is a sequential process that starts with the adsorption of organic macromolecules (proteins, 
glycoproteins and polysaccharides). The second step, is characterized by the adhesion of prokaryotes and the 
subsequent development of a bacterial biofilm starting to produce a matrix of Extracellular Polymeric Substances 
(EPS). Here we will discuss how the bacterial community composition can be assessed during the initial phases of 
the biofilm development by the CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD–FISH), in 
combination with Confocal Laser Scanning Microscopy (CLSM). 
Understanding the first steps of the biofilm development process is of crucial importance for micro and macro 
fouling control and prevention
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 FIGURE 1  Microbial biofi lm formation. Modifi ed from http://www.whoi.edu/oceanus/illustrations

 FIGURE 2  A) Epifl uorescence micrograph of biofi lm. Blue, DAPI signals of bacteria; the red signal was due to the Chlorophyll a 
autofl uorescence in cyanobacterial and microalgal cells. B) CLSM images showing the spatial distribution of bacteria (X-Y 
plane) and the biofi lm thickness (X-Z plane), as determined by CARD-FISH. The autofl uorescence of the photosynthetic 
pigments (Chl a) was detected with the 633-nm line of an Ar/HeNe laser (excitation) and observed in the red and far-red 
channels at 590 to 800 nm (emission). The hybridized cells were excited with the 488-nm line of an Ar laser and observed in 
the green channel from 490 to 530 nm (adapted from Lupini et al. [39])
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Biofi lms are now recognized as matrix-enclosed, atta-
ched microbial communities that can develop highly 
differentiated architectures, including mushroom-like 
structures, ripples and ridges, or fi lamentous streamers 
fl oating in the bulk liquid. The extracellular matrix is 
a key factor for the overall biofi lm functionality. It is 
a highly hydrated system composed of extracellular 
polymeric substances (EPS) comprising exopolysac-
charides, along with a wide variety of proteins, nucleic 
acids, glycoproteins, phospholipids, glycolipids and 
humic substances [14, 15, 23, 24]. Although the preci-
se and molecular interactions of the various secreted 
biofi lm matrix polymers have not been defi ned, and 
the contributions of these components to matrix inte-
grity are poorly understood at the molecular level [25], 
several functions of EPS have been determined. Inde-
pendent of the EPS composition, the matrix typically 
features a hydrogel-like structure, which embeds the 
biofi lm cells and determines the physico-chemical and 
biological properties of the whole biofi lm [26, 27].
The matrix network encloses and holds together the 
microorganisms in the biofi lm, providing mechanical 
stability to the community [26, 27], which is the major 
advantage of the biofi lm mode of life for microorgani-
sms [28]. In addition, EPS are thought to play an impor-
tant role in the adhesion of cells to substrata. This allows 
the formation of stable and functional microconsortia 
with a low expense of energy, allowing cells to metabo-
lise, reproduce and communicate between each other 
more effi ciently [29]. In addition to the advantages of 
mechanical stability, the matrix also provides protec-
tion against heavy metals, other toxic substances and 
grazing by predators. The intense research on single- 
or multi-species biofi lms grown in fl ow cells have also 
unravelled many microbial interactions (competition, 
cooperation), largely deterministic in nature, due to the 
coexistence of niche differentiation [22].
In the wild, biofi lms are open and dynamic commu-
nities and are part of a larger network; some authors 
suggested a new ecological concept of biofi lms, and 
by viewing biofi lms as microbial landscapes, studied 
their community assembly according to the metacom-
munity ecology theory [19, 22, 30]. The formation of 
phototrophic biofi lms is a complex process, regulated 
by diverse hydrodynamic and chemical characteristics 

of the surrounding water, preconditioning of the sub-
stratum, cell surface characteristics, EPS secretion [30, 
31, 32]. As biofi lms develop, competition for resources 
such as nutrients, light, and space, is believed to select 
those species that are more competitive for a limiting 
resource. Oxygenic phototrophic microorganisms such 
as benthic diatoms, unicellular and fi lamentous cyano-
bacteria, and benthic green algae generate energy and 
reduce carbon dioxide, providing organic substrates 
and oxygen. This photosynthetic activity fuels meta-
bolic processes and conversions in the entire biofi lm 
community, including the heterotrophic fraction [33].
 The utilization of CO2 during photosynthesis results in 
steep vertical redox and chemical gradients that enfor-
ce the stratifi cation in these communities along the mi-
croenvironments, restricting phototrophic microorgani-
sms to the upper layer of the biofi lm, most anoxygenic 
phototrophs and anaerobic chemotrophs to the lower 
part. With the increasing complexity of maturing bio-
fi lms, competition for resources is likely to support 
high species diversity and spatial heterogeneity, as 
a result of concurrent functional niche diversifi cation 
within the biofi lm [19].

Single-cell approach and CLSM to study the 
biofi lm 3D architecture

Currently, increasing attention is being paid to bio-
fi lms that develop on artifi cial substrata immersed in 
seawater [34, 35, 36, 37, 38]. However, microbial bio-
fi lms in aquatic environments are very heterogeneous 
and dynamic systems, which makes them diffi cult to 
model and investigate. In marine biofi lms developed 
on unpainted artifi cial surfaces, microbial communi-
ties mainly consist of bacteria and diatoms [39]. Pro-
teobacteria, especially a-proteobacteria, appear do-
minant among these bacterial communities [40, 41, 42, 
43], but the population dynamics depends on several 
environmental factors. Marine biofi lm communities 
have also been reported as a potential source of pa-
thogenic bacteria [44, 45]. However, bacterial commu-
nities grown on dissimilar surfaces appeared to evolve 
and become more similar over time, as determined by 
Denaturing Gradient Gel Electrophoresis (DGGE) and 
Fluorescence In Situ Hybridization (FISH) [41,42]. By 
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using Fluorescence In Situ Hybridization techniques 
(e.g. CARD-FISH), the bacterial community composi-
tion can be documented, but loosing information on 
the spatial distribution of specifi c bacterial clusters, 
which is due to the destruction of the biofi lm structure 
by scraping and fi ltering [46, 47, 48]. When it comes to 
the possibility of visualizing specifi c cells while main-
taining the 3D structure of the biofi lm unaltered, there 
have been substantial improvements made by utilizing 
FISH in combination with Confocal Laser Scanning Mi-
croscopy (see CLSM-FISH in [49]). A limited number of 
studies have demonstrated the direct use of CLSM-FISH 
on a biofi lm attached to an artifi cial or natural substra-

tum (e.g. polycarbonate slides – [50]; clay beads – [51]; 
polystyrene beads – [52]; marine algae – [53]). Several 
attempts have recently been made by embedding bio-
fi lms on gel pads [54] or by using crio-sectioning [55, 
56, 57, 58]. However, such additional manipulation can 
potentially lead to a loss of mass and/or distortion of 
the in situ perspective [52].
We optimized a straightforward CARD-FISH protocol 
in combination with CSLM for the hybridization and 
the inspection of biofi lms attached to the original sub-
strate [59]. Thus, the protocol allows the simultaneous 
identifi cation and the spatial localization of cells, while 
maintaining the natural architecture of the biofi lm unal-

 FIGURE 3  CLSM images after staining with fl uorochromes. (a) Reaction of Anabaena augstumalis biofi lm 
to concanavalin A-Alexa Fluor 488-conjugate, showing neutral polysaccaridic material (green 
signal, Capsular Polysaccharides matrix-forming) deposited around the vegetative cells and 
akinetes, where fi laments attached to the substratum; (b, c) fi ne neutral polysaccharidic envelope 
surrounding the fi lament of P. autumnale biofi lm; (d, e)  Calothrix sp. biofi lm after staining with 
concanavalin A-Alexa Fluor 488-conjugate, showing the positive reaction of the basal part of 
the fi lament and the 3D reconstruction image of the fi laments of Calothrix sp. biofi lm and the 
envelopes around the basal part; (f) 3D reconstruction of the reaction of Nostoc sp. biofi lm with 
concanavalin A-Alexa Fluor 488-conjugate, showing the presence of an envelope around the 
heterocysts (green). The red signal was due to the Chl a autofl uorescence in vegetative cells and 
akinetes. Scale bars: 10 µm in a-c and 15 µm in d-f (adapted from Di Pippo et al. [19])
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tered. Due to the impracticality of applying the CARD-
FISH protocol to the biofi lm grown on fl at microscope 
glass slides, traditionally used for the analysis of the 
epiphytic community in fl owing water systems [60], 
we utilized chambered slides (10-well diagnostic mi-
croscope epoxy coated slides; well diameter:  6.7 mm 
- Thermo Scientifi c, Germany). The slides were ran-
domly collected in triplicate and then fi xed in formali-
ne (2% fi nal concentration). The slide surfaces around 
the wells were gently cleaned with a small tampon to 
remove the biofi lm grown in-between the wells, thus 
avoiding buffer scramble during the procedure. CARD-
FISH was performed, optimising the protocol for the 
analysis of bacterial cells on polycarbonate membrane 
after sample fi ltration described by Fazi et al. [61, 62]
(for details, see [59]).
CLSM can also be utilized to study the following 
stages of microfouling, when microalgal and cyano-
bacterial microconsortia colonize the bacterial layers 
[63], allowing the formation of phototrophic biofi lms. 
Confocal microscopy provides information on the 
morphology of the biofi lm-forming microorganisms, 
their spatial distribution, relationships with substra-
ta and the interactions among microbial members. 
The use of CLSM in a multichannel mode allows the 
visualization of the spatial distribution of cyanobacte-
ria and associated microalgae, bacteria and archea 
in phototrohic biofi lms as well as the distribution of 
EPS components by collecting series of optical sec-
tions at the appropriate excitation and emission wa-
velengths (Figure 3). The different channels map in-
dividual biofi lm components, detecting differences in 
the biofi lm-forming phototrophic cells thanks to their 
specifi c autofl uorescence, due to their intrinsic con-
tent in chlorophylls and phycobiliproteins absorbing 
in different wavelenghts. The superimposition of opti-

cal sections results in 2D and 3D images that show the 
cellular and sub-cellular heterogeneous distribution 
along the biofi lm. Since the CLSM techniques guaran-
tee the structural integrity of biofi lm communities, it 
is possible to evaluate the distribution of the different 
exopolymers that constitute the matrix by using diffe-
rent fl uorochromes to bind glycoconjugates, proteins 
and nucleic acids. We used different fl uorochromes on 
monospecifi c cyanobacterial biofi lms at the initial sta-
ge of development, and the CLSM observations have 
shown neutral exopolysaccharides specifi cally depo-
sited within the envelope around the cells, especially 
where fi laments attach to the substratum. Our results, 
based on CLSM observation, highlights how the diver-
se compositions of exopolysaccharides surrounding 
vegetative cells refl ect the different roles of polymers 
at different positions (Figure 3).

Conclusion

Bacterial successional changes can be described by 
applying the CARD-FISH protocol to intact biofi lms, 
thereby avoiding biofi lm detachment or manipulations. 
Our approach, in combination with an appropriate spa-
tial analysis, could contribute to elucidate how specifi c 
bacterial clusters participate in the development of the 
complex biofi lm structures and the mechanisms that 
regulate community composition dynamic and cell di-
spersion in aquatic environments. Moreover, thanks to 
the intrinsic content in pigments of phototrophic cells 
and the use of fl uorochromes, EPS-binding is possible 
to obtain information on spatial distribution of cyano-
bacterial, algal and exopolymeric components of pho-
totrophic biofi lms. These technologies help to under-
stand the fi rst steps of the biofi lm development process 
for micro-and macro-fouling control and prevention.  ●
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